skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ross, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The five Mw≥7.8 continental transform earthquakes since 2000 all nucleated on branch faults. This includes the 2001 Mw 7.8 Kokoxili, 2002 Mw 7.9 Denali, 2008 Mw 7.9 Wenchuan, 2016 Mw 7.8 Kaikōura, and 2023 Mw 7.8 Pazarcık events. A branch or splay is typically an immature fault that connects to the transform at an oblique angle and can have a different rake and dip than the transform. The branch faults ruptured for at least 25 km before they joined the transforms, which then ruptured an additional 250–450 km, in all but one case (Pazarcık) unilaterally. Branch fault nucleation is also likely for the 1939 M 7.8 Erzincan earthquake, possible for the 1906 Mw∼7.8 and 1857 Mw∼7.9 San Andreas earthquakes, but not for the 1990 Mw 7.7 Luzon, 2013 Mw 7.7 Balochistan, and 2023 Mw 7.7 Elbistan events. Here, we argue that because fault continuity and cataclastite within the fault damage zone develop through cumulative fault slip, mature transforms are pathways for dynamic rupture. Once a rupture enters the transform from the branch fault, flash shear heating causes pore fluid pressurization and sudden weakening in the cataclastite, resulting in very low dynamic friction. But the static friction on transforms is high, and so they are usually far from failure, which could be why they tend to be aseismic between, or at least for centuries after, great events. This could explain why the largest continental transform earthquakes either begin on a branch fault or nucleate along the transform at locations where the damage zone is absent or the fault continuity is disrupted by bends or echelons, as in the 1999 Mw 7.6 İzmit earthquake. Recognition of branch fault nucleation could be used to strengthen earthquake early warning in regions such as California, New Zealand, and Türkiye with transform faults. 
    more » « less
  2. Abstract Finite-element models of neotectonics require transform faults to rupture seismically even where preseismic shear stresses are low, presumably by dynamic-weakening mechanisms. A long-standing objection is that, if a rupture initiated at an asperity with high static friction stresses, which then transitioned to low dynamic-weakening stresses, local stress drop would be near total and on the order of 80 MPa, which is 4×–40× greater than observed. But the 5 Mw ≥ 7.8 transform earthquakes since 2000 initially ruptured on the branch faults of small net slip (Stein and Bird, 2024). If the slip initiates on a branch fault with different slip physics and no dynamic weakening, this solves the stress-drop problem. We propose that most large shallow earthquakes are hybrid ruptures, which begin on branch faults of small slip with high shear stresses, and then continue propagating on a connected dynamically weakened fault of large slip, even where shear stresses are low. One prediction of this model is that most large shallow ruptures should be unilateral. We test this prediction against the 100 largest (m ≥ 6.49) shallow continental strike-slip earthquakes 1977–2022, using information from the Global Centroid Moment Tensor and International Seismological Centre catalogs. The differences in time and location between the epicenter and the epicentroid define a horizontal “migration” velocity vector for the evolving centroid of each rupture. Early aftershock locations are summarized by a five-parameter elliptical model. Using the geometric relations between these (and mapped traces of active faults) and guided by a symmetrical decision table, we classified 55 ruptures as apparently unilateral, 30 as bilateral, and 15 as ambiguous. Our finding that a majority (55%–70%) of these ruptures are unilateral permits the interpretation that a majority of ruptures are hybrids, both in terms of geometry (branch fault to transform) and in terms of the physics of their fault slip. 
    more » « less
  3. Abstract We probe the interaction of large earthquakes on the East Anatolian fault zone, site of four Mw ≥ 6.8 events since 2020. We find that the 2023 Mw 7.8 Pazarcık shock promoted the Mw 7.7 Elbistan earthquake 9 hr later, largely through unclamping of the epicentral patch of the future rupture. Epicentral unclamping is also documented in the 1987 Superstition Hills, 1997 Kagoshima, and 2019 Ridgecrest sequences, so this may be common. The Mw 7.7 Elbistan earthquake, in turn, is calculated to have reduced the shear stress on the central Pazarcık rupture, producing a decrease in the aftershock rate along that section of the rupture. Nevertheless, the Mw 7.7 event ruptured through a Çardak fault section on which the shear stress was decreased by the Mw 7.8 rupture, and so rupture propagation was not halted by the static stress decrease. The 2020 Mw 6.8 Doğanyol–Sivrice earthquake, located beyond the northeast tip of the Mw 7.8 Pazarcık rupture, locally dropped the stress by ∼10 bars. The 2023 Mw 7.8 earthquake then increased the stress there by 1–2 bar, leaving a net stress drop, resulting in a hole in the 2023 Pazarcık aftershocks. We find that many lobes of calculated stress increase caused by the 2020–2023 Mw 6.8–7.8 earthquakes are sites of aftershocks, and we calculate 5–10 faults in several locations off the ruptures brought closer to failure. The earthquakes also cast broad stress shadows in which most faults were brought farther from failure, and we observe the beginnings of seismicity rate decreases in some of the deepest stress shadows. Some 41 Mw ≥ 5 aftershocks have struck since the Mw 7.8 mainshock. But based on these Coulomb interactions and on the rapid Kahramanmaraş aftershock decay, we forecast only about 1–3 Mw ≥ 5 earthquakes during the 12–month period beginning 1 December 2023, which is fortunately quite low. 
    more » « less
  4. We consider the problem of finding, through adaptive sampling, which of n populations (arms) has the largest mean. Our objective is to determine a rule which identifies the best arm with a fixed minimum confidence using as few observations as possible.We study such problems when the population distributions are either Bernoulli or normal. We take a Bayesian approach that assumes that the unknown means are the values of independent random variables having a common specified distribution. We propose to use the classical vector at a time rule, which samples each remaining arm once in each round, eliminating arms whose cumulative sum falls k below that of another arm. We show how this rule can be implemented and analyzed in our Bayesian setting and how it can be improved by early elimination. We also propose and analyze a variant of the classical play the winner algorithm. Numerical results show that these rules perform quite well, even when considering cases where the set of means do not look like they come from the specified prior. 
    more » « less
  5. Megathrust earthquakes release and transfer stress that has accumulated over hundreds of years, leading to large aftershocks that can be highly destructive. Understanding the spatiotemporal pattern of megathrust aftershocks is key to mitigating the seismic hazard. However, conflicting observations show aftershocks concentrated either along the rupture surface itself, along its periphery or well beyond it, and they can persist for a few years to decades. Here we present aftershock data following the four largest megathrust earthquakes since 1960, focusing on the change in seismicity rate following the best-recorded 2011 Tohoku earthquake, which shows an initially high aftershock rate on the rupture surface that quickly shuts down, while a zone up to ten times larger forms a ring of enhanced seismicity around it. We find that the aftershock pattern of Tohoku and the three other megathrusts can be explained by rate and state Coulomb stress transfer. We suggest that the shutdown in seismicity in the rupture zone may persist for centuries, leaving seismicity gaps that can be used to identify prehistoric megathrust events. In contrast, the seismicity of the surrounding area decays over 4-6 decades, increasing the seismic hazard after a megathrust earthquake. 
    more » « less
  6. Introduction Evidence of animal personality and behavioral syndromes is widespread across animals, yet the development of these traits remains poorly understood. Previous research has shown that exposure to predators, heterospecifics, and urbanized environments can influence personality and behavioral syndromes. Yet, to date, the influence of early social experiences with conspecifics on the development of adult behavioral traits is far less known. We use swordtail fish ( Xiphophorus nigrensis ), a species with three genetically-determined male mating strategies (courtship display, coercion, or mixed strategy) to assess how different early-life social experiences shape adult behavioral development. Methods We raised female swordtails from birth to adulthood in density-controlled sexual-social treatments that varied in the presence of the type of male mating tactics (coercers only, displayers only, coercers and displayers, and mixed-strategists only). At adulthood, we tested females’ boldness, shyness, aggression, sociality, and activity. Results We found that the number of different mating strategies females were raised with (social complexity) shaped behavioral development more than any individual mating strategy. Females reared in complex environments with two male mating tactics were bolder, less shy, and less aggressive than females reared with a single male mating tactic (either courtship only or coercion only). Complex sexual-social environments produced females with behavioral syndromes (correlations between aggression and activity, shyness and aggression, and social interaction and activity), whereas simple environments did not. Discussion Importantly, the characteristics of these socially-induced behavioral syndromes differ from those driven by predation, but converge on characteristics emerging from animals found in urban environments. Our findings suggest that complexity of the sexual-social environment shapes the development of personality and behavioral syndromes to facilitate social information gathering. Furthermore, our research highlights the previously overlooked influence of sexual selection as a significant contributing factor to diverse behavioral development. 
    more » « less
  7. ABSTRACT Female mate choice is a dynamic process that allows individuals to selectively mate with those of the opposite sex that display a preferred set of traits. Because in many species males compete with each other for fertilization opportunities, female mate choice can be a powerful agent of sexual selection, often resulting in highly conspicuous traits in males. Although the evolutionary causes and consequences of the ornamentation and behaviors displayed by males to attract mates have been well studied, embarrassingly little is known about the proximate neural mechanisms through which female choice occurs. In vertebrates, female mate choice is inherently a social behavior, and although much remains to be discovered about this process, recent evidence suggests the neural substrates and circuits underlying other fundamental social behaviors (such as pair bonding, aggression and parental care) are likely similarly recruited during mate choice. Notably, female mate choice is not static, as social and ecological environments can shape the brain and, consequently, behavior in specific ways. In this Review, we discuss how social and/or ecological influences mediate female choice and how this occurs within the brain. We then discuss our current understanding of the neural substrates underlying female mate choice, with a specific focus on those that also play a role in regulating other social behaviors. Finally, we propose several promising avenues for future research by highlighting novel model systems and new methodological approaches, which together will transform our understanding of the causes and consequences of female mate choice. 
    more » « less
  8. Abstract We first explore a series of retrospective earthquake interactions in southern California. We find that the four Mw≥7 shocks in the past 150 yr brought the Ridgecrest fault ∼1  bar closer to failure. Examining the 34 hr time span between the Mw 6.4 and Mw 7.1 events, we calculate that the Mw 6.4 event brought the hypocentral region of the Mw 7.1 earthquake 0.7 bars closer to failure, with the Mw 7.1 event relieving most of the surrounding stress that was imparted by the first. We also find that the Mw 6.4 cross-fault aftershocks shut down when they fell under the stress shadow of the Mw 7.1. Together, the Ridgecrest mainshocks brought a 120 km long portion of the Garlock fault from 0.2 to 10 bars closer to failure. These results motivate our introduction of forecasts of future seismicity. Most attempts to forecast aftershocks use statistical decay models or Coulomb stress transfer. Statistical approaches require simplifying assumptions about the spatial distribution of aftershocks and their decay; Coulomb models make simplifying assumptions about the geometry of the surrounding faults, which we seek here to remove. We perform a rate–state implementation of the Coulomb stress change on focal mechanisms to capture fault complexity. After tuning the model through a learning period to improve its forecast ability, we make retrospective forecasts to assess model’s predictive ability. Our forecast for the next 12 months yields a 2.3% chance of an Mw≥7.5 Garlock fault rupture. If such a rupture occurred and reached within 45 km of the San Andreas, we calculate it would raise the probability of a San Andreas rupture on the Mojave section by a factor of 150. We therefore estimate the net chance of large San Andreas earthquake in the next 12 months to be 1.15%, or about three to five times its background probability. 
    more » « less
  9. null (Ed.)